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Abstract

In this report I present original modification to a relativistic thin disc model. This is motivated by
unexpected X-rays observation from UV-only TDE disc when observed years later by Jonker et al.
in a recent survey. First I recall the relativistic TDE disc model developed by Balbus and Mummery
which has already proven to be able to fit real spectral data. I then propose modifications to this
model by varying the disc structure which aim at describing more realistically TDE lightcurve. I
present different kind of fluctuations and understand their effect on an accretion disc and its emissions.
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Introduction
The black hole solutions of Einstein equations are known for static, rotating and charged black holes.
Yet detecting those highly relativistic compact objects is usually achieved thanks to the radiation
emitted by their surroundings. For instance, most observed black holes are encircled by a disc of gas,
spiralling towards the hole. The gas of those discs often reaches very high temperatures and emits
high-energy light which we can observe from earth.
Accretion discs are of varying size through the universe. Be it a protoplanetary disc around a star
or disc around a super massive black hole at the centre of a galaxy, the physics is the same. Matter
is in rotation and depending on the strength of the gravitational field it may form new astrophysical
objects within itself.

Although it is known that most galaxies have a supermassive black hole in their centre [Magorrian
et al., 1998], the majority of neighbouring galaxies does not possess an active nucleus. The lack of
a large accretion disc around their supermassive black hole, renders their central black hole more
difficult to study and observe. A way to indirectly observe those quiet supermassive black holes is
via transient events during the short time period of which we receive a lot of radiated energy.Some
of those transient bursts of light correspond to what are called Tidal Disruption Events (hereafter
shortened to TDE), during which a star wanders too close to a supermassive black hole and gets torn
apart by tidal forces. A portion of the gas of the former star is ejected and is no longer gravitationally
bound to the black hole. The other fraction of the gas remains gravitationally bound to the black
hole and forms an accretion disc around it. The gas of the disc will undergo considerable heating due
to the turbulence therein and reach temperature above 104 K (e.g. [Holoien et al., 2019]). The gas
will hence be very bright, emitting mostly high-energy light like X-rays. Those transient emissions
typically last for a time of a few months. Most nearby supermassive black holes are only observable
during these events, this is why having a reliable model to describe the evolution of accretion discs
created during these is of prime importance for the study of supermassive black holes.

Thus the interesting quantity to model is the light emitted by the accreting gas. The luminosity is a
good indicator as it bears information on the temperature and density of the disc gas. The temporal
evolution of the luminosity is known for classical Keplerian discs, yet when it comes to super massive
black holes, relativistic effects are no longer negligible and requires more work. Although the outer
part of the disc is undoubtedly Keplerian, there will be mode coupling with the inner part of the
disc. This will have an influence on the evolution of the whole disc [Balbus, 2017]. The observational
data is often more precise than just the total luminosity of a transient even. In fact we almost never
have access to the full bolometric luminosity of a transient. It is possible to have observe specific
spectral bands and their evolution thanks to many recent ground telescopes and space observatories
(ASAS-SN1, Swift,...). This allows for a better knowledge of the temperature and density of the disc
gas, and their evolution.
If some of the temporal behaviour of spectral luminosities still remains unexplained by simple current
models, it is a way to refine theories and better understand the physics at play in those astrophysical
systems.

1All-Sky Automated Survey for SuperNovæ.
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1 TDE and disc theory background

1.1 Canonical TDE model

The first model for the evolution of debris of a disrupted star was developed at the end of the
1980s [Rees, 1988,Phinney, 1989]. According to this model only a fraction of the stellar mass remains
gravitationally bound to the black hole, while the rest of the mass is ejected onto parabolic obits.
Assuming that after disruption, gas particles have a typical energy corresponding to their Keplerian
gravitational potential energy, it is possible to know at which rate the bound debris will be swallowed
by the hole. Depending on the exact model for the energy distribution, one obtains slightly different
mass accretion rates. [Phinney, 1989] obtains a mass accretion rate ṁ(t) ∼ t−5/3.

Figure 1: This is the typical lightcurve of a TDE model. There is a time lag between when the star
get disrupted and when the maximum luminosity is reached. The accretion rate increases during
the time when matter piles in the innermost part of the disc. Then the accretion rate decrease in a
power law fashion, with L(t) ∼ t−5/3. The typical time scale of such events is a few months. Here τ
is a dimensionless time, proportional to the usual time t.

The usual assumption is that the luminosity of the heated gas will follow the behaviour of the
accretion rate. Hence, L(t) ∼ t−5/3. A typical TDE light curve is presented on figure 1. On this
plot, one can see the two general phases of the disc evolution. The first phase corresponds to matter
piling-in at the inner disc boundary. The second phase is the power-law decay of the disc, when mass
slowly falls onto the black hole.

1.2 Early disc models

The very first disc models date back to the end of the 1940s [von Weizsäcker, 1948]. Yet those
models did not match observation unless one invoked an (at the time) unknown angular momentum
redistribution mechanism. While some of the disc mass shall fall towards the central gravitational
body, the total angular momentum of the disc should be conserved. This implies that the angular
momentum is transported outwards by a small fraction of the mass.

The first quantitative evolution model of thin discs was proposed by [Lynden-Bell and Pringle, 1974],
who derived a diffusive evolution equation for the surface density of matter in the disc. This model
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and the model developed by [von Weizsäcker, 1948] used an ad hoc turbulent viscosity between
neighbouring fluid layers.

Shakura and Sunyaev [Shakura and Sunyaev, 1973] proposed a model for the turbulent viscosity of
such discs. It is parametrised in terms of a dimensionless number α and the local speed of sound cs.
This is the standard α-disc model.

2 Recent development in disc models
We now have a better insight on how the angular momentum is transported throughout the disc.
[Balbus and Hawley, 1991] proposed a mechanism where this transport is mediated by magnetic
fields coupling pairs of particles at different radii and the magneto-rotational instability (MRI). The
coupling is similar to one of a masses on spring. The coupling between two particles at different radii
induce a torque reducing angular momentum of the particle at smaller radius and increasing the
angular momentum of the outermost particle. The slowed particle will then fall at a smaller radius.
Likewise, the accelerated particle will move towards the outer regions of the disc.

More recent developments showed that one can obtain the same evolution equation as the canonical
model without using an ad hoc term. One can obtain the evolution equation by using the weak
turbulence formalism [Balbus and Papaloizou, 1999]. This gives rise to a correlation function of
radial and azimuthal fluid velocity fluctuation which parametrises the angular momentum transport
in the disc in the radial direction. As for many turbulence-related problems, the actual behaviour
of this function is poorly known. If we know that magnetic and turbulent stress both play a role, a
functional form of this function remains yet to be proposed. For now, this stress can be modelled in
a similar to that of the turbulent viscosity of α-discs.

2.1 Relativistic discs

The α-disc models can be generalised to a fully relativistic geometry [Eardley and Lightman, 1975,
Balbus, 2017] as will be presented in part I. Including general relativity to the thin disc formalism is
possible and yields a surprisingly simple diffusion equation [Balbus, 2017]. One of the key interest
of this relativistic models key interest is that relativistic thin disc with specific boundary condition
achieve a shallow luminosity decay fitting observation of the form L(t) = t−n as shown by [Balbus
and Mummery, 2018]. Newtonian models always yield a predicted value of power-law index n greater
than one, which, as we will see, does not match observations.

2.2 Limitation of the canonical model

The canonical TDE model mentioned above [Rees, 1988,Phinney, 1989] predicts a power-law decay of
the TDE bolometric luminosity at late times L(t) = t−n, with index n = 5/3. This model was derived
using basic Newtonian dynamics and is still used to distinguish TDE light curves (e.g. [Lodato and
Rossi, 2010]). Disc models have now been refined and they extend the duration of such events with
power-law index n ' 1.2 [Cannizzo et al., 1990]. However a recent comprehensive survey of 70 X-rays
transient sources, classified as TDEs, report a time behaviour with a shallower n ' 0.75 emission
decay rate [Auchettl et al., 2017], which can not be explained by the usual TDE models.

2.3 Stress condition at ISCO

Solving the evolution equation obtained from the relativistic model with a finite stress condition
at the innermost stable circular orbit (ISCO) of the Kerr geometry yields a value of n which is

Page 4



Fluctuating TDE discs Marc Van den Bossche – 2020

consistently less than unity [Balbus and Mummery, 2018]. This finite stress condition is actually
subject to discussion. First models claimed that the stress at ISCO had to be vanishing [Pringle,
1991, Balbus, 2017] as the solution to the equation with finite stress condition at ISCO exhibits
violents instabilities at small scales [Balbus, 2017]. This is the case for the viscous stress, which
vanishes at the ISCO. Yet more recent studies have shown that a finite condition better reproduced
the observed data [Balbus and Mummery, 2018,Mummery and Balbus, 2019a], those instabilities
remain consistent with a turbulent disc flow. This is because there is a non-vanishing magnetic
stress at the ISCO (e.g. [Noble et al., 2010]). TDEs appear to be a very useful events for determining
which of the two stress scenarii is physical as the expected behaviour of luminosity is dramatically
different for vanishing and finite stress conditions.

3 Unexplained late time X-ray observations of UV-only discs
A recent observation survey [Jonker et al., 2020] reported X-ray detection of several previously
detected TDEs, which did not feature X-rays when first observed. All of them had strict upper-
boundary at early times for any X-ray emission all of which have been exceeded by a significant
amount at later times. The sources are PTF09djl detected nine year prior to the 2019 survey,
PTF09axc and PTF09ge detected eight years before Jonker et al. observations [Law et al., 2009] and
ASASSN-14ae detected in 2014 [Holoien et al., 2014].

All these sources were then classified into the UV-only TDE discs category, and agreed with the usual
TDE models available at the time. For instance, ASASSN-14ae had been ruled out as an AGN2 or as
a supernova. Moreover this transient source featured constant temperature and a steadily declining
luminosity curve, which is caracteristic for a TDE [Holoien et al., 2014]. This classification is being
questioned by the recent survey and an explanation is yet to be given. In this work, I explore the
possibility of new initial conditions on the disc that could have prevented X emission at short times
after the TDE, but would allow for X-ray emission in the long run. I present such conditions in part
II.

In the first part of this report, I summarise the relativistic thin disc model developed by Balbus
and Mummery. I introduce the weak-turbulence formalism that, coupled to the Kerr solution of
general relativity black hole gives rise to the diffusion-like disc evolution equation. I also present
both analytical and numerical solutions of this equation. Finally I expose how, from those solutions,
one can reproduce spectral luminosities which can then be compared to actual observational data. In
the second part, I focus on an original modification of the disc model presented in the first part. First
I focus on conditions that prevent X-rays emission at early times. Then I expose ways of introducing
fluctuation in the disc model at hand and understand their effects.

Part I

Relativistic thin discs theory
1 A relativistic disc model
The model I use in this work is mathematically quite simple. It is the relativistic generalisation of
the usual α-disc models. This is the model developed in [Balbus, 2017,Balbus and Mummery, 2018]

2Active Glactic Nucleus
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and following papers.

1.1 The black hole geometry

For more generality we use the Kerr black hole metric. This black hole geometry corresponds to a
spinning black hole. This space-time is determined by only two parameters, the mass of the black
hole M and its angular momentum J . For simplicity we assume the disc to be in the equatorial
plane of the black hole space-time. We hence have the following metric, with z the rotation axis of
the black hole.

ds2 = −
(

1− 2rg
r

)
dt2 − 4rga

r
dtdφ+

dr2

1− 2rg
r

+ a2

r2

+

(
r2 + a2 +

2rga
2

r

)
dφ2 + dz2 (1)

These are the cylindrical Boyer-Lindquist coordinates for the Kerr geometry in the z = 0 equatorial
plane. a = J

Mc
is the spin parameter of the black hole and rg = GM

c2
the gravitational radius (half of

the Schwarzschild radius rs). If we wish to study the Schwarzschild geometry particular case, for a
non-rotating black hole, we simply have to set a = 0.
An implicit assumption we made throughout this work is that we neglect the influence of the disc
mass on space-time. Only the black hole of constant mass and spin will bend space-time. This
assumption is reasonable as supermassive black holes typically have masses above 106 M� and disc
masses are only a fraction of a solar masses.

1.2 Disc fluid

In the case of a TDE, the gas of the accretion disc comes from one star which was torn apart by
tidal forces of the black hole. To study its evolution after disruption, we make use of the canonical
general relativity fluid formalism and take advantage of the symmetries of the problem.

1.2.1 Relativistic fluid

In order to have a fully relativistic description of the fluid, we use the usual tensor and vector
formalism of general relativity. We will use the simple flux conservation equation

∇ · (nU) = 0, (2)

where ∇ is the covariant derivative, n is the rest-frame number density and U is the fluid 4-velocity.
This equation translates the fact that the number of particle in the fluid is constant.
We assume the system to be axisymmetric around the z axis and we assume that the disc is thin,
i.e. that it does not depend on the z coordinate. We thus integrate over z to have a column density
Σ.

Σ = m

∫
ndz

m is the mass of one particle. Σ is thus a surface density. For the stress-energy tensor, we use the
usual ideal fluid form to which we add a radiation pressure τ .

T = Pg + (P + ρ)U ⊗U + τ (3)

P is the pressure of the fluid, ρ its density, τ is symmetric by definition as it is the symmetric
tensor product of the radiative energy flow and fluid velocity. We need to include this radiation
pressure term as the angular momentum carried by radiated photons is not negligible when the
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rotational velocities are of order of the speed of light [Novikov and Thorne, 1973]. As mentioned in
this introduction, angular momentum redistribution is a key mechanism in disc dynamics.

Using antisymmetry properties of the Christoffel symbols we obtain the equation

1
√
g
∂µ(
√
gσµφ) = 0 (4)

where σ = T −Pg, and g = det g. We here have an equation on σ because the pressure contribution
is negligible, thus we approximate T ' σ.

Note that contrary to steady-state models, we did not assume that the disc does not have temporal
evolution. Unlike discs of [Shakura, 1972, Pringle and Rees, 1972, Shakura and Sunyaev, 1973] the
accretion disc of a TDE is bound to have a temporal evolution. TDE are by essence transient events.
Before the event, there is no disc, and if one waits long enough, the remaining disc after a few years
is almost completely depleted.

1.2.2 Weak turbulence formalism

We can describe the turbulence in the disc by small velocity departures from some time average
velocity. We take the fluctuations to be of vanishing time average.

Uµ = Uµ + δUµ, δUµ = 0 (5)

We assume that the time average velocities correspond to circular orbits of the fluid around the black
hole. Those velocities can be computed from the metric. The fluctuations are small departures from
this state. This can be written as

δUφ � Uφ, U r � δU r ∼ δUφ
r
� rUφ (6)

This will lead us to neglect U r in the following. We now introduce the stress tensorW as the average
of product of fluctuations, it is a kind of correlation function of the velocity fluctuations. Here we
will only be interested in the r, φ component, which is defined as

U rUφ = U
r
Uφ +W r

φ . (7)

The correlation function of the angular velocity and the radial velocity W r
φ = δU rδUφ corresponds

transport of angular momentum. W r
φ quantifies how the fluctuation of angular momentum δUφ is

transported by fluid radial velocity fluctuations δU r. I discuss the boundary conditions of W r
φ in

next section.

1.2.3 Energetics of the fluid

We assume an equilibrium model in which the energy that the fluid extracts from differential rotation
will instantaneously be radiated away at the disc surface. For this equilibrium model, [Page and
Thorne, 1974] present the following relationship

− ΣW r
φU

0
dΩ

dr
= 2F , (8)

where Ω = dφ
dt

= Uφ

U0
is the average angular velocity of orbiting particles. dΩ

dr
is the differential rotation,

which also appears in Newtonian disc theory. F is the locally radiated energy in the local rest frame.
The factor two comes from the fact that both upper and lower sides of the disc radiate.
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Using this and equation (4), one obtains the general equation for a thin disc in Kerr geometry

∂Σ

∂t
=

1
√
gU

0

∂

∂r

[
1

U
′
φ

(
∂

∂r
(
√
gΣW r

φ) + 2
√
gFUφ

)]
(9)

Dropping the overlines on average quantities and using the variable ζ =
√
gΣW r

φ

U0 , one obtains the
equation

∂ζ

∂t
=

W r
φ

(U0)2

∂

∂r

[
U0

U ′φ

∂ζ

∂r

]
(10)

This equation has useful analytical solutions in some simplified regimes of interest, this will be more
detailed in section 2. I also solved this diffusion-like equation numerically in regimes where no
analytical solution is available. Details on numerical integration are exposed in appendix A.1 and
A.2.

It is quite convenient that the full relativistic disc evolution is described by a simple diffusion-like
equation as equation (10). General relativity operates via the metric and the circular orbits velocities
U that the metric allows.

1.3 Boundary conditions

As for any partial differential equation problem, one needs to specify the boundary conditions of the
quantities we are solving for. Here there are two types of boundary conditions that require further
attention. The first is the behaviour of the stress-energy tensor at the ISCO. The second is the actual
density boundary condition at both edges of the integration domain.

1.3.1 Stress condition at ISCO

W r
φ is unknown in this problem. Ideally we could compute it from the equations on velocity, but

without doing so in GR-MHD 3D simulations, it is hard to get a prescription on it. A way to
circumvent this is to use an ansatz for W r

φ . What is often done is to take it to depend on r the
radius in a power-law fashion. We can also model a dependency on the density but in order to do
so, equation (10) has to be slightly modified.

∂ζ

∂t
=

(
W r
φ + Σ

∂W r
φ

∂Σ

)
1

(U0)2

∂

∂r

[
U0

U ′φ

∂ζ

∂r

]

The general form for W r
φ I used throughout this work is a double power-law dependency on radius

and density.

W r
φ(r,Σ) = w

(
r

rm

)µ(
Σ

Σ0

)η
(11)

Where w is a constant, rm is a typical radial scale and Σ0 is a typical density scale. This is similar to
the usual prescription of α-discs models. However, this functional form for the stress W r

φ is a model
idealisation and does not claim to be a realistic description of the real stress. With a such W r

φ , the
evolution equation reads

∂ζ

∂t
= (1 + η)

W r
φ

(U0)2

∂

∂r

[
U0

U ′φ

∂ζ

∂r

]
(12)
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Like the Schwarzschild black hole geometry, the Kerr geometry has what is called an Innermost
Stable Circular Orbit radius (shortened to ISCO). Below this radius, the assumption we made that
the velocity of the fluid U was small departures from circular orbits no longer holds, as no circular
orbit is possible.

The question of how W r
φ should behave at the ISCO is still uncertain. First theories that it should

vanish there [Pringle, 1991, Paczyński, 2000, Balbus, 2017] argued that the short-scale oscillatory
behaviour of the Laplace modes of the solutions translated into instabilities. The typical dispersion
relation of a Laplace mode e−st for s > 0 of the inner disc region reads

s =
W r
φ

U0U ′′φ

∣∣∣∣∣
r=rI

k3, (13)

where k is the wave number of a solution of the form Ai′(kx), with Ai the Airy function. This is
somewhat similar to the solutions exposed in section 2. Those models claimed those solutions to be
unphysical and so justified the need for a vanishing W r

φ at ISCO.

Yet a finite ISCO stress appears to yield a better fitting luminosity versus time profile [Balbus and
Mummery, 2018] than a vanishing ISCO stress does. Models with a vanishing stress condition at
ISCO consistently produce a L(t) ∼ t−n bolometric luminosity decay at large time with n > 1.
Recent observations [Auchettl et al., 2017] tend to suggest that for real TDE, we have n < 1. Such
a solution is obtained with a finite stress condition at ISCO. If it is natural for a viscous stress to
vanish at the point where the circular orbits breakdown, it is not the case for the magnetic stress.
The fact that magnetic stresses have a important effect in ther innermost regions of disc has been
known since a long time [Page and Thorne, 1974, Krolik, 1999, Gammie, 1999]. In the past two
decades, numerical studies have shown that the magnetic fields driving MRI, which drives angular
momentum transfer in the disc, leads non-zero magnetic stresses at ISCO for extended phases of the
disc evolution (e.g. [Noble et al., 2010]).

Note that equation (11) implies a finite stress at ISCO.When using a vanishing ISCO stress condition,
I use a piecewise continuous expression of W r

φ . Above 10rg, I use expression (11), and below I take
W r
φ ∝ (r − rI)2. rI is the ISCO radius.

1.3.2 Density boundary condition

At ISCO The sensible ISCO condition for density depends on whether we impose finite or vanishing
stress tensor there. For a vanishing ISCO stress, one should impose ζ(t, rI) = 0 i.e. density does
not diverge there (as ζ ∝ ΣW r

φ). For a finte ISCO stress, one should impose ∂rζ(t, rI) = 0. The
latter condition correspond to the fact that the density will equilibrate instantaneously thanks to the
non-vanishing density current y =

√
gΣW r

φ at ISCO.

At infinity The physical condition that should be imposed is Σ(t, r =∞) = 0 as we assume that
no mass can reach infinity in a finite time. However for numerical integration, it is not possible to
integrate on a infinite box. I imposed a vanish gradient condition ∂rζ(t, rmax) = 0. It allows mass to
flow rimwards without being stuck at the outer boundary, as a strict condition there would do.

When imposing a vanishing gradient, be it at ISCO or at infinity, some mass is lost from the inte-
gration box. One should be aware of it but it is not a problem, as it is expected that mass will fall
onto the black hole and that some, carrying angular momentum will flow outwards.
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(a) Disc with finite ISCO stress. (b) Disc with vanishing ISCO stress.

Figure 2: This plot represents the surface density of the disc at different times. The initial condition
is a Dirac delta at 30rg. It smooths out and then falls towards the black hole. Note that the inner
most point of the curves corresponds to ISCO radius, below which the integration can not be carried
out. The run of figure 2a used a finite stress condition at ISCO. The run of figure 2b used a vanishing
stress condition at ISCO. The τ time scale is defined in equation (14).

Figure 2a presents the evolution of the density with a finite ISCO stress condition. One can see the
initial Dirac delta condition first smooths out and spreads both towards the black hole and rimwards.
Then the mass proceeds to fall towards the black hole and piles-in near the ISCO. Slowly the disc
matter is accreted onto the hole and the disc mass decreases. The general behaviour of the evolution
of a disc with vanishing stress at ISCO is similar. However, as can be seen on figure 2b, the depletion
of such a disc is much more rapid. At τ = 50, the disc with vanishing stress condition is completely
depleted.
On this figure, the time scale used is a dimensionless one defined in [Balbus and Mummery, 2018] as

τ =
t

tv
=

16q2

γ2r2q
0

t (14)

where tv is the viscous time scale. q = 3−2µ
4

where µ is the power law dependency of W r
φ on the

radius. γ2 = 2rµm

√
GM
w2 , where M is the black hole mass, G is Newton gravitation constant, w is

the multiplicative factor of W r
φ . r0 is the initial condition disc radius and rm is the same as in the

definition of W r
φ in equation (11).

1.4 Initial condition

The initial conditions for this diffusion problem are somewhat less important than the boundary
conditions. Indeed the long term evolution of the disc does not depend on the exact form of the
initial condition [Balbus and Mummery, 2018].

The initial condition for the matter distribution that I use throughout this work consists of a initial
Dirac delta function at some initial radius r0, δ(r−r0). This corresponds to an infinitesimally radially
thin ring at this radius. For the numerical integration I carry out, this naturally translates into a
numerical Dirac delta i.e. a Kronecker delta function δr,r0 . The normalisation of the initial condition
corresponds to the initial mass of the disc. This is a fraction of the mass of the disrupted star.

Page 10



Fluctuating TDE discs Marc Van den Bossche – 2020

1.5 Bolometric luminosity

From the density profiles we obtain by solving equation (10), one can compute the total luminosity
emitted by the accretion disc. Using the energy flux F defined in equation (8), the luminosity reads

L(t) ∝
∫ ∞

0

√
grrgφφ

F
(U0)2

dr (15)

However we do not integrate the equation for radii below the ISCO, we thus ignore this part of
the disc in terms of luminosity. We also neglect any relativistic ray tracing effects here. Numerical
integral computation was carried out using a Simpson algorithm, see appendix A.3 for more details.

Figure 3: This is a comparative plot of bolometric luminosity light curve for both stress conditions
at ISCO. The luminosities are normalised by their maxima. Both decay in a power law fashion at
large time, L(t) ∼ t−n. The orange curve is the luminosity of a disc with a vanishing W r

φ ISCO
stress, its decay is such that n > 1. The blue curve represents the luminosity decay of a disc with
finite stress at ISCO. It decays more slowly, with n < 1.

It is this luminosity function that reportedly has a shallower decay than what the canonical disc
models predict. However as discussed in the previous section, using a finite stress condition at ISCO
allows for a better agreement with observational data. Figure 3 presents a plot of the bolometric
luminosity with both ISCO stress conditions. The difference between the two light curves is notice-
able. The luminosity of a disc with vanishing stress condition at ISCO decreases by two orders of
magnitudes in the same time during which the luminosity of the finite stress disc only reaches half
of its initial value. The only difference between the two curves of this figure is the stress boundary
condition at ISCO. This difference of accretion rate can also be seen on figure 2, where the disc with
vanishing stress at ISCO is depleted much more rapidly.

2 Solutions of the model
Here we aim at solving equation (10) for radii larger than the ISCO radius, hence determining most
of the disc mass evolution. I only present the finite stress at ISCO solution, at it has already been
shown to be a better fit for observations [Balbus and Mummery, 2018,Mummery and Balbus, 2019a].
First we shall assume that at large radii, and down to some radius rm, the angular momentum
gradient of the disc fluid dUφ

dr
is the Keplerian angular momentum gradient. We assume that below
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radius rm, the angular momentum gradient is linear in r and matches the Keplerian one at rm. It is
reasonable to make this prescription for the inner region as, in full general relativity, dUφ

dr
vanishes at

the ISCO.

dŨφ
dr

=


√

2rg
r3I

(r − rI) for rI < r < rm,

1
2

√
GM
r

for r > rm.

(16)

We also assume a constant stress W r
φ(t, r) = w. We do so for simplicity and because once the ISCO

condition is set, the results are not very sensitive to the exact parametrisation of the stress [Balbus
and Mummery, 2018]. Hence, equation (10) becomes

∂y

∂t
=

w√
2ΩI

∂

∂x

[
1

x

∂y

∂x

]
for rI < r < rm, (17)

∂y

∂t
=

2w√
GM

∂

∂r

[√
r
∂y

∂r

]
for r > rm. (18)

Where y = ζU0 =
√
gΣW r

φ , x = r − rI , ΩI =
√

rg
r3I

and the joining condition is continuity of y and
∂y
∂r

at rm. One can examine the corresponding Laplace mode equations with time dependence e−st
for s > 0

−s
√

2ΩI

w
y =

d

dx

[
1

x

dy

dx

]
for rI < r < rm, (19)

−s
√
GM

2w
ξy =

d2y

dξ2
for r > rm, (20)

where we use ξ =
√
r. These equations have well known solutions, they read

y = Ai′(−kx), k3 =
s
√

2ΩI

w
, for rI < r < rm, (21)

y± =
√
ξJ± 1

3

(
2q

3
ξ

3
2

)
, q2 =

s
√
GM

2w
, for r > rm. (22)

Ai is the Airy function and Jp is the standard Bessel function of order p. Above the matching radius,
we have a superposition of both solution (both +1

3
and −1

3
order Bessel functions). The superposition

integral at large radii reads∫ ∞
0

Jp(
√
sX)Jp(

√
sX0)e−stdt =

1

t
exp

(
−X2 −X2

0

4t

)
Ip

(
XX0

2t

)
(23)

where X0 is the initial disc radius and Ip is the modified Bessel function of order p. The numerical
solution, for example figure 2, is in agreement with this analytical result. As shown in [Balbus and
Mummery, 2018], for a vanishing ISCO stress condition, the solution with Bessel function of order
p = +1

3
dominates. For a finite ISCO stress, it is the negative order p = −1

3
which dominates.

3 Spectral evolution of a relativistic thin disc
We are able to predict the bolometric luminosity of an accretion disc, yet it is not easy to compare
those results with actual observations. Even though observations of black hole accretion discs are
performed at different wavelengths ranging from optical light to X-rays, observation of a single disc
is often achieved at a few wavelengths only. Furthermore the telescope often does not have a wide
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spectral range and to obtain a complete spectrum of a single object, one needs several observations.
It is thus useful to be able to predict the behaviour of a disc in term of a given wavelength emission.
Moreover some frequencies of light are impossible to observe from earth, namely extreme UVs.
Without observing them, it is impossible for us to obtain the full bolometric luminosity.

3.1 Black body model

The simplest model one can take is to assume that the disc is a multi-temperature black body. For
a one dimensional disc model like described in section 1, the temperature will be a function of the
radial distance only. The temperature can be computed in the thin disc formalism as

σT 4(t, r) = −U
0(r)Uφ(r)

2r

Ω′(r)

Ω(r)
ζ(t, r) (24)

σ is the Stefan-Boltzmann constant. The usual relativistic black body equation reads, for the emitted
luminosity between two frequencies

FX(t) =

∫ νu

ν`

∫
S

2hν3
o

c2

1

e
hνe
kBT − 1

dΘodνo (25)

h and kB are Planck’s and Boltzmann’s constants respectively. dΘo = dαdβ
D2 is the solid angle under

which the system is observed, where α and β are photon impact parameters at infinity and D is
the distance between observer and the disc. νe and νo are the emitted and observed frequencies
respectively. ν` and νu are the lower and upper frequencies of the band we wish to model. f = νo

νe
can

be computed using the metric and depends only on r if we assume that the disc lies on the equatorial
plane as in section 1. Indeed

f =
1

U0

1

1 +
pφ
p0

Ω
, (26)

where p is the 4-angular momentum of an emitted photon in the local rest frame which can be
obtained by solving p · p = 0 for the photon. This takes ray tracing into account, with general
relativistic geometry.
It is convenient to define an effective temperature T̃ such that

T̃ (r, t) = f(r)T (r, t) (27)

Hence, we rewrite the observed flux

FX(t) =

∫ νu

ν`

∫
S

2hν3
o

c2

1

e
hνo
kBT̃ − 1

dΘodνo (28)

With this model, it is quite simple to access emission at specific energies from the density profiles,
which we obtain from solving equations of section 1. This model has achieved fitting of observed
sources [Mummery and Balbus, 2020]. Those fits are presented on figures 4. The presented curves
are fits to the source ASASSN-14li [Holoien et al., 2015]. The analytical curve on figure 4a can be
obtained taking the quasi-Wien limit (hν >> kT ) of equation (28) and using the fact that the peak
temperature of the disc behaves as

Tp ∼ τ−n/4.

This behaviour for the peak temperature can be obtained using a self-similar disc solution as described
in [Pringle, 1991].
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(a) 0.3 – 10 keV X-rays (b) UVW1 band

Figure 4: These are the plots presented in [Mummery and Balbus, 2020]. They show how the light
curves produced with this model compare to actual ASASS-14li observations. Figure 4a compares
the numerical integrated disc model (dashed green curve), with the analytical disc model (light
green curve) and ASASS-14li data (orange dots). The curves, both analytical and numerical fit the
observed data. Figure 4b shows how the UV emission, modelled as presented in this report, also fits
the observed data. It compares the disc model of part I (dashed red curve), an exponential fit (black
dashed line), the sum of the exponential model and the disc model (black curve) and the observed
data (orange dots).

Note that on figure 4b, an exponential term of the form F0 exp
(
− t−tD

tUV

)
is added to fit the curves

(tD is the time at which the TDE begins and tUV is some UV time scale). This is because at early
times the physics included in the model presented here is not enough to model the light emission.
Discs can be messy at early times and phenomena like clumping of matter may happen and strongly
change the emission. The usual way of modelling this missing physics is with an exponential decay
term for the UV emission [Holoien et al., 2015]. Note that the actual cause of this exponentially
decaying emission is not known, it might even not be coming from the disc itself.

3.2 Approximations

For simplicity’s sake, in this work I use a somewhat simplified model. I do not take into account the
ray tracing effects. This translates into using a simpler expression of the ratio f

f ' 1

U0
. (29)

The effective temperature I use is defined as in equation (27), but its values will be slightly different.

This first part furnishes a complete model for TDEs and the evolution of the disc formed from debris
of the disrupted star. This model has been refined in a series of paper [Balbus, 2017, Balbus and
Mummery, 2018,Mummery and Balbus, 2019a,Mummery and Balbus, 2019b,Mummery and Balbus,
2020] and we now know more about the specific conditions that one shall use to model a realistic
TDE event. For instance, contrary to what was thought at early stages, a finite stress condition at
ISCO appears to be physical and better fits observations. This model provides us with a way to
obtain theoretical spectral light curves both analytically and numerically.
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Part II

New results
If the observed lightcurves of real TDE are well fitted by the model presented in part I, the observed
values always exhibit small departures from the theory. The precision of the instruments used for
these detection are nowadays such that those departures should be trusted as real physical phenom-
ena. An example of a fluctuating light curve of a TDE is presented on figure 5. How the model I
present in this part for fluctuations can describe it is discussed below.

Figure 5: This is a plot of the raw and binned observed X-rays luminosity of AT2018fyk [Wevers
et al., 2019]. This sources has a temporal gap of X-rays emission between days 100 and 200 after first
detection. This gap could correspond to a depletion event. This figure is courtesy of A. Mummery.

Some of the departures suggest that some physics is missing in the model I presented. A good
example for some missing physics is that the model of part I does not predict the early UV behaviour
of ASASSN-14li (figure 4b), as discussed above. One had to add by hand the exponential term
corresponding to early times TDE disc physics, which was not included in the model of part I.

In this part, I present different modifications to the model presented in the first part in which I
truncate the disc and vary its density distribution. I examine how those modification affect the disc
and the produced lightcurves.

1 Truncated discs
The spectral time evolution of actual TDE disc is not very well known. This is because the available
theoretical TDE models are simplified models and they fail to explain the exact 3D dynamics of the
disc gas. The approximations made in those models often are reasonable enough to well describe ac-
tual TDEs. For instance [Mummery and Balbus, 2020] fitted ASASS-14li observation data. However
some discs appear to feature more complicated dynamics that the current models yet fail to describe.
For example several discs that have been classified into classical UV-only scenario four to nine years
ago have recently been observed anew and featured X-ray emission [Jonker et al., 2020].

This can be caused by a lot of different phenomena, including emission mechanism that is not included
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in the relativistic thin disc model presented in part I. However one can try and include by hand some
of the consequences of this physics in the model and observe and quantify the modifications that it
induces on the disc evolution.

Such a treatment can be proposed for the initial state of the disc. We can imagine that the inner
edge of the disc is not at ISCO, but at some greater radius. This could be because of some peculiar
dynamics close the the black hole such as ultra relativistic jets blowing matter that gets too close.
It is also possible that the innermost part of the disc could be unstable, causing it to be constantly
depleted. We can model this by truncating the disc at early times, assuming that all the mass falling
below rt is either swallowed by the hole, or blown out of the disc, either way, this is mass which is
lost for the disc. This peculiar dynamics is also to end at some time te after the beginning of the
TDE. This translates into new boundary conditions for equation (10).

Similarly to the condition we used in part I, we impose, at all times, a vanishing gradient for ζ at
the outer boundary

∂ζ

∂r
(r∞, t) = 0. (30)

For times before the truncation condition is lifted, at times t < te, we also impose the density below
the truncation radius to be vanishing

ζ(r, t) = 0, for r < rt (31)

Finally, after the truncation is lifted, at times t ≥ te, we impose the usual vanishing gradient condition
on ζ at the ISCO radius

∂ζ

∂r
(rI , t) = 0. (32)

Note that before te, the inner disc condition is the same as if we imposed a vanishing stress there.
As discussed in [Balbus and Mummery, 2018] and in part I of this report, this means that the disc
will decay more rapidly in this first phase, be it the disc mass or its luminosity.

1.1 Analytical solution

The equation of the problem stays the same : it is equation (10). Like in section 2, we assume that
at large radii, the angular momentum gradient is Newtonian.
We divide the resolution in two steps: The first phase is when the disc is truncated, then the second
phase is when it is not.
Like above, we assume a constant W r

φ = w and we also assume rt < rm such that the truncation
radius is in the relativistic region.

1.1.1 Phase 1: Truncated disc evolution

Because of the ζ = 0 inner boundary condition, this part is the same as before as with vanishing
stress condition. The equations read

∂y

∂t
=

w√
2ΩI

∂

∂x

[
1

x

∂y

∂x

]
for rt < r < rm, (33)

∂y

∂t
=

2w√
GM

∂

∂r

[√
r
∂y

∂r

]
for r > rm, (34)
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and the Laplace mode truncated solutions are

ỹtr.,1(s, r) = Ai′(−kx), k3 =
s
√

2ΩI

w
, for rt < r < rm, (35)

ỹtr.,2(s, r) =
√
ξJ− 1

3

(
2q

3
ξ

3
2

)
, q2 =

s
√
GM

2w
, ξ =

√
r, for r > rm. (36)

It is implicit that for r < rt we have ζ(r) = y(r) = Σ(r) = 0 in this first phase. Note that the
vanishing condition at rt has the same effect on the solution as the vanishing stress tensor solution,
but at rt rather than rI .

In each region, to have the real time-solution, one has to do inverse Laplace transform.

ytr.,i(t, r) =
1

2πi

∫ γ+iT

γ−iT
estỹtr.,i(s, r)ds (37)

As we are working with Bessel functions, it is quite convenient that Iα(x) = i−αJα(ix).

We call Ytr.(t, r) the continuous function defined at all times 0 < t < te

Ytr.(t, r) =


0, if r < rt,

ytr.,1(t, r), if rt ≤ r < rm,

ytr.,2(t, r), if r ≥ rm.

(38)

1.1.2 Phase 2: Back to usual finite stress solution

In the second phase, the equations still are equations (33) and (34), yet the initial conditions are
different. We do not have a Dirac delta but the state of the truncated disc at time te. The solutions
will have the same form, yet the integration constants will be different.

ỹf,1(s, r) = α1 Ai′(−kx) + β1 Bi′(−kx), k3 =
s
√

2ΩI

w
, for rI < r < rm, (39)

ỹf,2(s, r) = α2

√
ξJ− 1

3

(
2q

3
ξ

3
2

)
+ β2

√
ξJ 1

3

(
2q

3
ξ

3
2

)
, q2 =

s
√
GM

2w
, ξ =

√
r, for r > rm. (40)

where αi and βi are such that the joining condition is time-continuity at all radii

∀r > rI , Yf (0, r) = Ytr.(te, r),

where Yf (r, t) is the continuous function defined at all times t > 0

Yf (t, r) =

{
yf,1(t, r), if rI ≤ r < rm,

yf,2(t, r), if r ≥ rm.
(41)

1.2 Numerical solution

Solving the equations in the truncated case numerically is no problem. One has to implement
conditions (30),(31) and (32) in the numerical solver developed in part I.
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1.2.1 General solution

The first confirmation that we have is that, the two phases indeed look like the vanshing stress case
for the first phase, and like the finite stress case for the second phase. The decay, be it of mass or
luminosity, has a higher rate in the first phase. We can compare the luminosity plotted on figure 7c
with the light curves of figure 3. In the first phase, one has a rapidly decaying power law with n > 1
while in the second phase we have a shallower n < 1. In the second phase, we witness a so called
stalled accretion [Mummery and Balbus, 2019a].

Figure 6, shows the density evolution of such a truncated disc. Both phases are clearly distinguishable.
First the disc evolves accordingly to usual vanishing stress models [Balbus, 2017, Pringle, 1991].
Debris of the star pile in near the inner boundary and slowly accrete through this boundary. When
the truncation is lifted, the remaining gas falls towards the ISCO. This is somewhat similar to the
usual evolution of a disc with finite stress condition at ISCO.

Param. Value
a/rg 0.5
M 1.85× 106 M�
m 1.63× 10−2 M�
µ 0
η 0

te/tv 5
rt/rg 15
r0/rg 30

Table 1: These are the parametres used for the run with a truncated disc. m is the mass of the disc.
In order to have sensible parameter valeus, I use the same paramtre values as the parametres that
achieved a fit of ASASSN-14li presented in [Mummery and Balbus, 2020]. The parameters I added
are the three last lines of this table, concerning truncation. This is is not to reproduce a particular
observation, but rather to observe the general behaviour of a truncated disc.

.

Note that in table 1, the truncation time is taken at a value larger than tv. This is because tv is
the viscous time scale i.e. it is the time that the disc takes to go from its initial condition to its
“equilibrium” state. This “equilibrium” state corresponds to a density distribution with no memory
of the initial condition. An example of such a distribution, is the τ = 50 curve (red) of figure 2.
Taking any te > tv has a similar effect on the disc. The remaining mass after te will change, but
the general behaviour is unchanged. I take such a value of te to let the disc reach this state before
removing the truncation.

The effect of the truncation on the disc seems to have varying effect depending on the mean of
observation. For instance, there is little effect on the UV emission, as shown on figure 7. This is
because the UV light is emitted on a much larger region of the disc as, unlike X-rays, it does not
require extreme temperature of the gas. The same figure also shows that at first there is no X-ray
emission. This is because the density of the disc, and thus its temperature, are not high enough. The
truncation, when released, gives rise to a X-ray peak. This peak is also a feature of the bolometric
luminosity. This is due to matter piling up at the inner edge of the disc, and thus reaching very
high densities and temperatures. For both the X-rays and the bolometric luminosity, the peak after
truncation is at a lower intensity than for disc which is not truncated. This is because, although
the density near the ISCO becomes very high, the overall mass of the disc has decreased since its
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Figure 6: Surface density of the disc at different times. The parameters of this run are specified in
table 1. One can clearly see the two phases of the dynamics. First matter piles-in near rt at times
τ = 0.025, 0.2, 0.5. The truncation is relaxed at τ = 5. The remaining matter then falls toward the
ISCO in the usual fashion (see part I) at times τ = 6, 25, 60.

initial value. The parameters of this run are the same as those used to produce the numerical curve
of figure 4a. One can notice that the peak here is almost a thousand times less bright. This is due
to the accretion of mass during the first phase of evolution.

(a) UVW1, UVM2 and UVW2. (b) 0.3 – 10 keV X-ray. (c) Bolometric luminosity.

Figure 7: The two first figures are mock Swift observations, of both its UV bands and X band.
The third figure is the total bolometric luminosity of the disc. The parameters of this truncated
disc are presented in table 1. The labels of the curves indicate the truncation radius. The UV lines
emission do not change by much after the truncation is released. However the truncation prevents
any detectable X-ray emission prior to te.

1.2.2 Effect of truncation radius

The parameter of the truncation that one can easily change is the radius at which the truncation
happens. It is not obvious how changing it will affect the luminosities of the disc. The truncation
radius shall be put to comparison with both the ISCO radius and the initial radius of the disc.
Getting close to either of them might have different effects.
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Param. Value
a/rg 0.5
M 1.85× 106 M�
m 1.63× 10−2 M�
µ 0
η 0

te/tv 5
r0/rg 15

(a) Parameters kept constant

ID Param. Value
1 rt/rg 4.23
2 rt/rg 7.30
3 rt/rg 8.96
4 rt/rg 10.38
5 rt/rg 11.70
6 rt/rg 12.95
7 rt/rg 14.16

(b) Varying parameter

Table 2: These are the parameters used for the comparatives runs with truncated discs. Here too
the disc mass, black hole mass and spin are taken from the fitting values of ASASS-14li [Mummery
and Balbus, 2020]. Note that run #1 has truncation at ISCO, this is equivalent to letting the disc
evolve in the first phase with vanishing ISCO stress.

In the limit rt = rI , nothing special happens, it is the normal disc evolution with vanishing stress
condition at ISCO during the first phase. This is illustrated on figure 8, see the curves with parameter
rt = 4.23rg (blue curves). Yet for a truncation slightly above the ISCO radius, the effect is strong.
Values of rt tested are presented in table 2.

(a) UVM2 line (b) Swift X-rays

Figure 8: These plots are the mock Swift UV and X-rays lightcurves for truncated discs. This
plot compares the lightcurves of discs which only differ by their truncation radii rt. The curves
label correspond to the parameters listed in 2. In all cases the UV emission is less affected by the
truncation that the X-rays emission is. Unless for run # 1, there is not X-rays emission in the first
phase of evolution, when the disc is truncated.

The light curves for different truncation radii are plotted on figure 8. One can see that like in
the previous case, the UV emission is rather unaffected by the truncation. The X-rays emission is
dramatically modified. For untruncated discs, there is X-rays emission right from the start. Here,
it is the case only when rt = rI , the ISCO radius. Otherwise the density is not high enough at the
inner disc edge during the first phase.
A larger truncation radius rt induces X-ray luminosity peak at later times. The matter that piled-in
at the truncation radius, has a longer way to fall before reaching the ISCO and piling up again there.
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It is this secondary piling-in that produces very high temperatures within the disc gas, hence the
X-ray emission. However the larger the truncation radius, the less bright the disc is in the X-rays.
This is due to the fact that during the first phase more mass is accreted onto the black hole because
the truncation radius is closer and closer to the radius of the initial Dirac ring.

As I used physically reasonable values for the parameters, the absolute values of the obtained light
curves make sense. For the largest truncation radii tested, it is possible that the X-rays light would
be below the detection thresholds of telescopes as it is thousands of times dimmer than the actual
ASASSN-14li observation.
This could also be a possible scenario for the observed late time only X-rays [Jonker et al., 2020].
The disc of those TDE could have been truncated for a long time by some yet unknown physical
mechanism. The truncation could have ended some time between the first detection and the recent
survey by Jonker et al. This would allow for a late X-rays emission compatible with the absence of
X-rays in the first times.

2 Periodic depletion
In this section, I explore the effect of a periodic depletion of some of the disc mass. This could
be used to model fluctuating sources. I first examine the general effects of a periodic depletion of
the innermost part of the disc. I then study the influence of the truncation radius for this kind of
fluctuations.

2.1 Sharp depletion of the inner disc

The innermost part of the disc can be subject to different instabilities and those may lead to a rapid
depletion of its inner matter. Here I model, in a somewhat similar fashion to previous section, the
sudden depletion of the inner part of a TDE disc. I let the disc evolve normally and every Td, I
remove all matter below some depletion radius rd. This depletion is instantaneous. Analytically this
would happen exactly when t ≡ 0 mod [Td]. Numerically, the depletion lasts only for one time step,
the disc is free to flow back in the inner region right after it.

Unlike for truncated discs discussed in section 1, this is not equivalent to the vanishing stress case.
The stress is always finite at ISCO and not particular condition other than ζ(t = kTd, r ≤ rt) = 0
for k ∈ N∗ is imposed at rt.

For simplicity, the depletion is modelled at periodic. This is an idealised model, which do not claim
to fit any observed source.

Like in section 1, I choose a value of the depletion period such that Td > tv. This is so that the disc
density distribution has time to reach a state with no memory of the previous depletion. Additional
effects may arise if we take Td shorter than the viscous time scale. For instance, the total disc mass
could decrease rapidly if the over-density wave corresponding to the peak density in the first phase
were to be completely depleted before having time to spread again.

The run presented in figure 9, the parameters of which are in table 3, is the result of such a periodic
depletion. One can notice that, like in the simple truncation case, the UV are not affected a lot
by the periodic depletion. Apart from the small fluctuation, these light curves is similar to usual
untruncated discs like the one used to fit ASASSN-14li data.
However the X-ray emission, coming for the most part from the innermost part of the disc, is strongly
dimmed by each depletion. For instance the first depletion event reduces the luminosity by a factor
close to 104 before it comes up again. If the upper envelope of the X-rays light curves looks similar
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Params. Value
a/rg 0.5
M 1.85× 106 M�
m 1.63× 10−2 M�
µ 0
η 0

r0/rg 30
Td/tv 5
rd/rg 15

Table 3: These are the parameters of the periodic depletion run. Those values are also taken
from [Mummery and Balbus, 2020] for the most part. This allows sensible comparison of the obtained
light curves with the ASASSN-14li data. I take Td/tv > 1 to let the disc settle down between each
depletion event.

(a) Mock ASASSN UV lines (b) Mock Swift X emission

Figure 9: These plots are UV and X-rays lightcurves produced by a periodically depleted disc. The
parameters for this run are in table 3. The X-rays is strongly affected by the repeated depletion.
However the UV lines emission is significantly less affected. The upper envelope of both light curves
are similar to usual undepleted disc. The effect of the depletion is a fluctuation of the emitted light.

to the one of ASASSN-14li, its fluctuations are a lot stronger. It is also noteworthy that contrary to
the truncated disc scenario, the luminosity is quite high for the X-rays, comparable to the luminosity
of ASASSN-14li. This is because the first phase of the truncated disc evolution gave rise to a long
and strong mass depletion period. Here mass is lost only instantaneously at each depletion event.
Moreover, as I take Td > tv the disc has time to smoothly spread before being depleted again. So
doing minimises the mass loss during depletion events.

This plot could correspond to a fluctuating source, where some complicated dynamics periodically
remove the innermost part of the disc. Some of the X-ray luminosity point might even be under the
detection threshold at their lowest, then come back up just before the next depletion.
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2.2 Influence of the depletion radius

Like for truncated discs, the depletion radius plays an important role in the lightcurves of periodic
depletion events. Here too it is interesting to see how much the depletion radius influences the X-rays
and UV emission depending on how it compares to the ISCO radius and the initial Dirac ring radius.

Param. Value
a/rg 0.5
M 1.85× 106 M�
m 1.63× 10−2 M�
µ 0
η 0

Td/tv 5
r0/rg 30

(a) Parameters kept constant

ID Param. Value
1 rd/rg 4.23
2 rd/rg 8.96
3 rd/rg 14.16
4 rd/rg 16.48
5 rd/rg 19.83

(b) Varying parameter

Table 4: Parameters used for the comparatives runs with truncated discs. The constant parameters
are the same as in table 3. Here too the values of the parameters are the ones for the fit of ASASSN-
14li. Note that run #1 has truncation radius at ISCO. See figure 10.

Here, in the limit rt = rI , it is not equivalent to the vanishing stress condition at ISCO. The depletion
is instantaneous, and apart from when t ≡ 0 mod [Td], the disc is free to evolve with the finite ISCO
stress condition. The depletion for rt = rI will have a small effect, it will only remove the mass
exactly at ISCO. For numerical integration, this corresponds to setting ζt0 to 0.

(a) UVM2 line (b) X

Figure 10: Here are presented UV and X-rays emission of depleted discs with different depletion
parameters. The list of parameters in table 5 correspond to the labels of the curves. I compare the
effect of different depletion radius values. The closer to ISCO the depletion radius is, the less effect
the depletion has on the UV and X-rays light curves.

We see that it has a double effect on the light curves presented in figure 10. First, like for truncated
discs, the overall luminosity, be it X-rays or UV, is dimmer with greater depletion radius. This is
because more mass is being removed at each depletion event. This causes the density, including the
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peak density, to be lower less after each depletion event too. The gas heats less and is thus less UV
and X-bright.
We also see that the fluctuation amplitude is greater for those large depletion radii. For instance the
first depletion event of the run with largest depletion radius lowers the X-rays emission by a factor
close to 105 where the run presented in previous subsection had a factor . 104. This is because most
of the high-energy light is coming from the innermost part of the disc. Removing it will dramatically
dim the disc until matter flows back inwards. The more matter is removed, the less dense its ’pile’
near ISCO will be. Hence less hot and less bright.
We also note that the when the depletion radius is the ISCO radius, the light curves are very similar
to the usual untruncated, undepleted disc.

Adjusting the depletion radius together with viscous time, the black hole and disc masses would allow
having a model with enough parameters to fit a fluctuating source. The depletion radius determines
the amplitude of the fluctuations while the masses determine the overall intensity of the emitted
light. This could for example model sources like the one presented on figure 5 [Wevers et al., 2019].
This source features a gap of 100 days in detected X-rays emission. This gap could correspond to
one of those depletion events. The X-rays emission is most probably only lesser and not completely
dimmed.

3 Mass conserving fluctuations of the disc
An actual TDE disc is most probably not as simple as the models presented until now are. A way to
model possible fluctuations of the disc matter is to slightly change the position of its matter. Here I
present a second fluctuation model, with periodic fluctuation events taking place every Tf . The main
difference between this kind of fluctuations and the fluctuations presented in the previous section
is that these conserve the disc mass. The periodic depletion, by construction, did not conserve the
mass as every Td, the inner part of the disc was removed.

Here at each depletion event, I take the mass between two radii ri and ro and change the density
distribution of this mass into a gaussian distribution.

ζ(kTf , r) 7−→ N e−(r−rc)2/σ2
f (42)

for r between ri and ro, and k ∈ N. rc is the radius around which the fluctuation is centred. σf is
the standard deviation of the gaussian distribution, this correspond to how flat the distribution is.
In the following, σf = 0 means that I used a Dirac delta function rather than a gaussian of finite
width. N is a free parameter such that the mass in the fluctuating region is conserved. It is such
that ∫ ro

ri

(
U0(r)

)2 ζ(kTf , r)

W r
φ

dr = N
∫ ro

ri

(U0(r))
2

W r
φ

e−(r−rc)2/σ2
fdr (43)

The mass integral over the rest of the domain is evolving as usual.

Note that in table 5, we have ri > rI the ISCO radius. This is because, when fluctuations happen
near the ISCO, the effect is very strong and does not correspond to small departures from the usual
lightcurves. Those results are not uninteresting but are left for future work.

Like in both previous modifications to the model of part I, the UV emission is less affected by the
fluctuations in density than the X-rays emission is. We can see it on figure 11. Both lightcurves
are very similar to those of ASASSN-14li. The UV emission plateaus rapidly and remains constant
until the end of the run. The X-rays emission is also not very different from the usual lightcurves.
The final luminosity of both UV and X-rays are lower for more peaked fluctuations. Even though
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Param. Value
a/rg 0.5
M 1.85× 106 M�
m 1.63× 10−2 M�
µ 0
η 0

Tf/tv 5
r0/rg 30
ri/rg 9
ro/rg 30
rc/rg 20

(a) Parameters kept constant

ID Param. Value
1 σf/rg 0
2 σf/rg 5
3 σf/rg 10
4 σf/rg 15
5 σf/rg 20

(b) Varying parameter

Table 5: Parameters used for the comparatives runs with fluctuating discs. The constant parameters
are the same as in table 3. Here too the values of the parameters are the ones for the fit of ASASSN-
14li. Note that run #1 has σf = 0, because the mass is put inside a Dirac delta.

(a) UVM2 line (b) X

Figure 11: These plot are lightcurves of UV and X-rays emission of fluctuating discs. The fluctuation
parameters are presented in table 5. Here I compare the effect on a periodically fluctuating disc, the
effect of the width of the fluctuation. The wider the gaussian distribution of density is, the less effect
the fluctuation has on lightcurves. Note that 0rg width stands for a Dirac delta.

the fluctuation in its self is mass conserving, it will have an influence on the density evolution right
after it. A sharper fluctuation will very unevenly distribute matter on the region, taking the mass of
the outer fluctuating region at rc rather than near ro where it should be. This accelerates the mass
depletion of the disc by moving the matter closer to the ISCO where mass falls onto the black hole.

The overall effects on the light curves are quite subtle, even for the X-rays emission. This could
correspond to the lightcurves of turbulent accretion discs the matter of which periodically take the
shape of a gaussian ring for some reason (e.g. the gravitational influence of a nearby star, as galaxy
centre are the densest parts of a galaxy).
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4 Conclusion on modifications of the model
Even though the model presented in part I only included simple physics, one can easily modify this
model in order to produce more realistic data. I showed how one could explain a late time only
X-rays detection, while being consistent with UV emission at early times. I also presented simple
model for both mass conserving and not-conserving fluctuation. Those model produce lightcurves
with small departures from the usual lightcurves obtained from the model of part I.

Conclusion
In this report I present how it is possible to produce more realistic theoretical lightcurves for both
UV and X-rays emission for transient TDE accretion discs than previous models. I used a fully
relativistic disc model [Balbus, 2017]. This model makes use of very well-known physics, namely
general relativity, one-dimensional hydrodynamics and Boltzman black-body equation. I solve both
analytically and numerically the diffusion-like equation of this model. With the appropriate stress
condition at ISCO, this model is known to fit real TDE lightcurves, with powerlaw decay index
n < 1 [Balbus and Mummery, 2018]. This model also produces spectral lightcurves which are
capable of fitting real transient sources like ASASSN-14li [Mummery and Balbus, 2020]

I then report how new modifications of this model can explain observations that previous models
failed to explain. For instance I present how an initial truncation of the disc prevents any X-ray
emission while allowing UV emission at early times. This is what is reported by [Jonker et al., 2020],
sources that where detected with UV emission only, now appear to feature X-rays emission. I also
examine different types of periodic density fluctuations in the disc, both mass conserving and which
do not conserve mass. These fluctuations in density achieve to produce fluctuation in the X-rays
emission while having a small impact on the UV emission of the TDE accretion discs.

For observers to be able to use those fluctuations model, those shall now be studied in a more quan-
titative way. In order to know, for a given luminosity fluctuation, how strong a density fluctuation is
needed to explain it. The results obtained so far are promising and this work is left for the remainder
of this internship and for future works.
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A Numerical methods

A.1 Radial variable

If we write the evolution equation (10), replacing U by its value obtained from the metric, we obtain

∂ζ

∂t
=

2W r
φ√

rg(U0)2

∂

∂r

r3/2
1− 3 rg

r
+ 2a

√
rg
r3

r − 6rg − 3a
2

r
+ 8a

√
rg
r

∂ζ

∂r

 . (44)

In this equation the radius of the ISCO is singular. The ISCO radius is solution of r2 − 6rrg − a2 +
8a
√
rrg = 0 [Hobson et al., 2006]. This renders numerical integration unstable near the ISCO. What
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we can do is use an other radial variable, for instance

ρ =

(
r − 6rg −

3a2

r
+ 8a

rg
r

)2

or (45)

v =
ρ

r
. (46)

Both variables are bijective functions for r > rISCO, and even if inverting those functions analytically
might be hard, doing so numerically is not a problem. One shall nevertheless replace the r derivatives
with the appropriate derivatives in the evolution equation.

∂

∂r
−→ ∂ρ

∂r

∂

∂ρ
or

∂v

∂r

∂

∂v

The ρ variable was first proposed in [Balbus and Mummery, 2018], but the v variable is more
convenient for numerical resolution as v ∼ r at infinity, whereas ρ ∼ r2. Then we see r as an implicit
function of ρ or v for the other terms of the evolution equation.

A.2 Implicit finite difference

In this work I used an implicit finite difference scheme to integrate the diffusion-like equation. Here
to examine the numerical method, I use a generic form of the equation

∂ζ

∂t
= W (r, ζ)A(r)

[
B(r)

∂ζ

∂r
+ C(r)

∂2ζ

∂r2

]
(47)

Note that here r is a generic name for a radial coordinate, and not the real radial cylindrical coor-
dinate. The functional dependencies of A,B,C and W are dropped for clarity.

We use a centred scheme, withO(dr2) error, we use a first order approximation for the time derivative,
with error O(dt). I used an implicit scheme, which compared to an explicit scheme, always is
numerically stable. However as we will see, one needs to invert a matrix at each time step, making
the implicit scheme more computation heavy [Press et al., 2007]. The discretised equation reads

ζt+1
r − ζtr
dt

= WA

[
B
ζt+1
r+1 − ζt+1

r−1

2dr
+ C

ζt+1
r+1 − 2ζt+1

r + ζt+1
r−1

dr2

]
. (48)

We can write the associated linear system as

ζtr = ζt+1
r

[
1 +WAC

dt

dr2

]
+ ζt+1

r+1

[
−WAB

2

dt

dr
−WAC

dt

dr2

]
+ ζt+1

r−1

[
WAB

2

dt

dr2
−WAC

dt

dr2

]
(49)

= ζt+1
r χtr + ζt+1

r+1ϕ
t
r + ζt+1

r−1ψ
t
r (50)

⇔ Zt = M (t)Zt+1 (51)

⇔ Zt+1 =
(
M (t)

)−1
Zt (52)

where in equation (51) and (52) we use Zt = T (ζt0 . . . ζ
t
r . . . ζ

t
Nr−1) and we can write the tridiagonal

matrix M (t)

M (t) =



χt0 ϕt0 0 . . . 0
ψt1 χt1 ϕt1 0 . . . 0

0 ψt2 χt2
. . . ...

0
. . . . . . . . . 0

... . . . . . . ϕtNr−2

0 . . . . . . 0 ψtNr−1 χtNr−1


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Note that χ,ψ and ϕ depend both on time and space as they are combinations of A(r),B(r),C(r)
and W (r, ζ). This means that if W does depend on the density, thus on time, the computations gets
a lot more heavy as the matrix has to be inverted at each time step. For a time independent W we
have a computation time of order O(NtN

2
r ) whereas for a time dependent W we have O(NtN

3
r )3.

Note that if W does not depend on the density, M (t) = M t is the usual matrix power.

It is also interesting to see that all boundary counditions for ζ are not directly compatible with
equivalence of equations (51) and (52). For instance zero boundary conditions render M singular
(with first and last lines set to zero). When we want to impose such boundary conditions (or
vanishing gradients), I compute the matrix in its regular way, invert it and only then do I set the
values of ζ at radii of interest according to the chosen boundary conditions. This has a sensible
physical interpretation. For example, in the case of strict boundary condition at the inner edge,
this corresponds to matter that fell below the innermost integration radius (the ISCO). This matter
is actually lost for the above ISCO system. For strict condition at the outer edge, this is more
subtle. Imposing such a boundary condition corresponds to the assumption that the outer edge of
the integration domain is far enough that no matter will reach it while the time of the integration.
One has to carrefully check that this assumption holds at every time step.

A.3 Simpson integration for non-constant steps

The principle of Simpson algorithm is to integrate a quadratic polynomial interpolation of the function
of interest. For a general function f , we interpolate between three points x1, x2 and x3 where f takes
values f1, f2 and f3 respectively. We define the steps as h = x2 − x1 and k = x3 − x2. We require
to have two possibly different steps as when integrate physical quantities we shall integrate over the
real radial coordinate r but we used a discretisation such that dv = cst or dρ = cst, hence the r steps
are not constant. We aim to solving the following system for a, b, and c

f1 = ah2 − bh+ c

f2 = c

f3 = ak2 + bk + c

(53)

Note that we approximate f(x) by P (x − x2) a quadratic polynomial function to carry out the
integration, such that P (x) = ax2 + bx + c. P (x1 − x2) = f1, P (0) = f2 and P (x3 − x2) = f3. The
solution of system (53) reads 

a = kf1−(h+k)f2+hf3
kh(h+k)

b = −k2f1+(h2−k2)f2+h2f3
kh(h+k)

c = f2

(54)

Now we switch to a more convenient polynomial function : Q(x) = P (x− x2) = ax2 + (b− 2ax2)x+
ax2

2 − bx2 + c = αx2 + βx+ γ. Hence∫ x3

x1

f(x)dx '
∫ x3

x1

Q(x)dx = α
x3

3 − x3
1

3
+ β

x2
3 − x2

1

2
+ γ(x3 − x1) (55)

The resolution of system (53) has to be carried out every other step as h and k are not constant. An
example is plotted on figure 12.

3The usual computation time growth for a n × n matrix inversion is O(n3). I did not use a algorithm specific to
tridiagonal matrices.
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Figure 12: This is an example of interpolation of a function f by a quadratic polynomial function
Q. The coloured area in light green corresponds to the approximated integral of f between x1 and
x3.

Page 31


	Introduction
	TDE and disc theory background
	Canonical TDE model
	Early disc models
	Recent development in disc models
	Relativistic discs
	Limitation of the canonical model
	Stress condition at ISCO
	Unexplained late time X-ray observations of UV-only discs
	I Relativistic thin discs theory
	A relativistic disc model
	The black hole geometry
	Disc fluid
	Relativistic fluid
	Weak turbulence formalism
	Energetics of the fluid
	Boundary conditions
	Stress condition at ISCO
	Density boundary condition

	Initial condition

	Bolometric luminosity

	Solutions of the model
	Spectral evolution of a relativistic thin disc
	Black body model
	Approximations

	II New results
	Truncated discs
	Analytical solution
	Phase 1: Truncated disc evolution
	Phase 2: Back to usual finite stress solution

	Numerical solution
	General solution
	Effect of truncation radius
	Periodic depletion
	Sharp depletion of the inner disc
	Influence of the depletion radius
	Mass conserving fluctuations of the disc
	Conclusion on modifications of the model
	Conlusion

	Acknowledgements
	Bibliography
	Numerical methods
	Radial variable
	Implicit finite difference
	Simpson integration for non-constant steps

















